View | Details | Raw Unified | Return to bug 283036
Collapse All | Expand All

(-)b/biology/gemma/Makefile (-3 / +4 lines)
Lines 1-11 Link Here
1
PORTNAME=	gemma
1
PORTNAME=	gemma
2
DISTVERSION=	0.98.3
2
DISTVERSIONPREFIX=	v
3
PORTREVISION=	5
3
DISTVERSION=	0.98.5
4
CATEGORIES=	biology
4
CATEGORIES=	biology
5
5
6
MAINTAINER=	jwb@FreeBSD.org
6
MAINTAINER=	jwb@FreeBSD.org
7
COMMENT=	Genome-wide Efficient Mixed Model Association
7
COMMENT=	Genome-wide Efficient Mixed Model Association
8
WWW=		https://github.com/genetics-statistics/GEMMA
8
WWW=		https://xiangzhou.github.io/software/ \
9
		https://github.com/genetics-statistics/GEMMA/
9
10
10
LICENSE=	GPLv3
11
LICENSE=	GPLv3
11
LICENSE_FILE=	${WRKSRC}/LICENSE
12
LICENSE_FILE=	${WRKSRC}/LICENSE
(-)b/biology/gemma/distinfo (-3 / +3 lines)
Lines 1-3 Link Here
1
TIMESTAMP = 1609514940
1
TIMESTAMP = 1732864105
2
SHA256 (genetics-statistics-GEMMA-0.98.3_GH0.tar.gz) = 8c27874634269f52a194a41048e70c17e2128563f56bb8ef59338a93147c61ba
2
SHA256 (genetics-statistics-GEMMA-v0.98.5_GH0.tar.gz) = 3ed336deee29e370f96ec8f1a240f7b62550e57dcd1694245ce7ec8f42241677
3
SIZE (genetics-statistics-GEMMA-0.98.3_GH0.tar.gz) = 49572695
3
SIZE (genetics-statistics-GEMMA-v0.98.5_GH0.tar.gz) = 51259250
(-)b/biology/gemma/pkg-descr (-1 / +20 lines)
Lines 1-3 Link Here
1
GEMMA is a software toolkit for fast application of linear mixed models (LMMs)
1
GEMMA is a software toolkit for fast application of linear mixed models (LMMs)
2
and related models to genome-wide association studies (GWAS) and other
2
and related models to genome-wide association studies (GWAS) and other
3
large-scale data sets.
3
large-scale data sets.
4
- 
4
5
Key features:
6
7
1.  Fast assocation tests implemented using the univariate linear mixed model
8
    (LMM). In GWAS, this can correct for population structure and sample
9
    non-exchangeability. It also provides estimates of the proportion of
10
    variance in phenotypes explained by available genotypes (PVE), often called
11
    "chip heritability" or "SNP heritability".
12
2.  Fast association tests for multiple phenotypes implemented using a
13
    multivariate linear mixed model (mvLMM). In GWAS, this can correct for
14
    population structure and sample (non)exchangeability - jointly in multiple
15
    complex phenotypes.
16
3.  Bayesian sparse linear mixed model (BSLMM) for estimating PVE, phenotype
17
    prediction, and multi-marker modeling in GWAS.
18
4.  Estimation of variance components ("chip/SNP heritability") partitioned by
19
    different SNP functional categories from raw (individual-level) data or
20
    summary data. For raw data, HE regression or the REML AI algorithm can be
21
    used to estimate variance components when individual-level data are
22
    available. For summary data, GEMMA uses the MQS algorithm to estimate
23
    variance components.

Return to bug 283036